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Summary

We consider the problem of drawing superiority inferences on individual endpoints following non-infer-
iority testing. R�hmel et al. (2006) pointed out this as an important problem which had not been
addressed by the previous procedures that only tested for global superiority. R�hmel et al. objected to
incorporating the non-inferiority tests in the assessment of the global superiority test by exploiting the
relationship between the two, since the results of the latter test then depend on the non-inferiority
margins specified for the former test. We argue that this is justified, besides the fact that it enhances
the power of the global superiority test. We provide a closed testing formulation which generalizes the
three-step procedure proposed by R�hmel et al. for two endpoints. For the global superiority test, R�h-
mel et al. suggest using the L�uter (1996) test which is modified to make it monotone. The resulting
test not only is complicated to use, but the modification does not readily extend to more than two
endpoints, and it is less powerful in general than several of its competitors. This is verified in a simula-
tion study. Instead, we suggest applying the one-sided likelihood ratio test used by Perlman and Wu
(2004) or the union-intersection tmax test used by Tamhane and Logan (2004).

Key words: Closed test procedure; Familywise error rate; Intersection-union test; Likelihood
ratio test; Multiple comparisons; Multiple endpoints; Non-inferiority; Union-
intersection test.

1 Introduction

Recently there has been much interest in the so-called “superiority-non-inferiority approach” to the
multiple endpoints problem in which the goal is to demonstrate that the treatment is not inferior by
more than a specified margin to the control on all endpoints, and superior on at least one endpoint.
This is formulated as a hypothesis testing problem with the type I error controlled at a designated
level a. The multivariate normal model (stated in Section 2) is commonly assumed. All procedures
use separate a-level t-tests on individual endpoints for non-inferiority testing since it is an intersec-
tion-union (IU) testing problem (Berger, 1982; Laska and Meisner, 1989). The procedures differ in the
global tests that they use for superiority. The Bloch, Lai and Tubert-Bitter (2001) procedure uses a
one-sided version of Hotelling’s T2-test. The Perlman and Wu (2004) procedure uses the one-sided
likelihood ratio (LR) test of Perlman (1969). The Tamhane and Logan (2004) procedure uses the
union-intersection (UI) test (Roy 1953) based on the tmax statistic. The R�hmel et al. (2006) procedure
uses a modified (to achieve monotonicity) L�uter’s (1996) exact test (or the Holm 1979 test). We refer
to these procedures as the BLT, PW, TL and RGBL procedures, respectively. Recently, Bloch et al.
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(2007) have generalized the BLT procedure to arbitrary functionals of the treatment and control distri-
butions (instead of just the mean differences) and a nonparametric setting.

Since the overall goal of demonstrating both non-inferiority and superiority is itself an IU testing
problem, a simple way to combine the tests for superiority and non-inferiority is to perform them
separately, each at the a-level. However, this can be overly conservative since it assumes that the
least favorable configuration (LFC) for the non-inferiority problem, which is that the treatment is
inferior on one endpoint and is infinitely superior on all the others, holds simultaneously with the
LFC for the superiority problem, which is that the treatment approaches borderline superiority on all
endpoints. It is clear that the two LFCs are incompatible. In fact, the two tests are closely related
and a more powerful test can be derived by utilizing the fact that demonstration of non-inferiority
on all endpoints adds credence to superiority on at least one endpoint (more on this later). Bloch et
al. (2001) and Tamhane and Logan (2004) used this idea to sharpen the critical constant of the
superiority test. Since the exact evaluation of the critical constant (or equivalently the p-value) for
the resulting test is difficult, these authors employed the bootstrap method. Perlman and Wu (2004)
did not utilize this method to sharpen their superiority test, and applied the latter independently at
the a-level.

R�hmel et al. (2006) dismissed these procedures arguing that they result in the dependence of the
p-value for the superiority test on the inferiority margins which they were “unable to find a good
reason” for and hence found them “difficult to understand.” We will provide a counter-argument to
this based in part on the discussion in the previous paragraph. They emphasized the importance of
drawing superiority inferences on individual endpoints. Restricting to two endpoints, they proposed a
three-step procedure in which the first step is the non-inferiority tests, the second step is a modified
(for monotonicity) global test of L�uter (1996) or the Holm (1979) test for superiority, and the third
step is the separate a-level t-tests for superiority on individual endpoints.

We agree with R�hmel et al. that a global test of superiority is often insufficient and inferences on
individual endpoints are necessary. To derive FWER controlling procedures, we show how the super-
iority-non-inferiority problem with inferences on individual endpoints can be formulated as a closed
testing problem and how to define the necessary families of hypotheses. We show that the stepwise
procedure proposed by R�hmel et al. (2006) for the two endpoint problem is a particular application
of this closed procedure and how it can be extended to more than two endpoints. Using simulations
we demonstrate that if the tmax or the PW global test for superiority is sharpened as indicated above,
the resulting three-step procedure is generally more powerful.

The paper is organized as follows. Section 2 introduces the notation, assumptions and the problem
formulation. Section 3 reviews the procedures mentioned above. The closed testing formulation is
given in Section 4. Two examples to illustrate the competing procedures are given in Section 5. Simu-
lation results for FWER and power are given in Section 6. Conclusions and extensions are stated in
Section 7.

2 Preliminaries and Notation

Consider a treatment group labelled 1 and a control group labelled 2 with n1 and n2 patients. Suppose
that m � 2 endpoints are measured on each patient. Denote the random data vectors from group i
by Xij ¼ ðXij1;Xij2; . . . ;XijmÞ0 and their observed values by xij ¼ ðxij1; xij2; . . . ; xijmÞ0
ði ¼ 1; 2; j ¼ 1; 2; . . . ; niÞ. We assume that the Xij are independent and identically distributed (i.i.d.)
random vectors from an m-variate normal distribution with mean vector mi ¼ ðmi1; mi2; . . . ; mimÞ

0 and a
common covariance matrix S ¼ fsk‘g with skk ¼ s2

k ¼ var ðXijkÞ and sk‘ ¼ cov ðXijk;Xij‘Þ for k 6¼ ‘.
Let dk ¼ m1k � m2k and let d ¼ ðd1; d2; . . . ; dmÞ0 ¼ m1 � m2 be the vector of mean differences between
the treatment and the control. The treatment is regarded as superior to the control on the k-th endpoint
if dk > xk and non-inferior to the control if dk > � ek, where the constants xk � 0 and ek > 0 are
prespecified. It is common to specify all xk ¼ 0, but we continue with the more general case in the
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remainder of the paper. The hypotheses for showing superiority are

HðSÞ0k : dk � xk vs: HðSÞ1k : dk > xk ð1 � k � mÞ ð1Þ

and those for showing non-inferiority are

HðNÞ0k : dk � � ek vs: HðNÞ1k : dk > � ek ð1 � k � mÞ : ð2Þ

Note that the superiority hypothesis is simply a shift of the non-inferiority hypothesis that requires a
higher threshold to be cleared for its proof. To show superiority of the treatment on at least one end-
point and non-inferiority on all endpoints leads to the following UI and IU testing problems:

HðSÞ0 ¼
\m
k¼1

HðSÞ0k vs: HðSÞ1 ¼
[m
k¼1

HðSÞ1k and HðNÞ0 ¼
[m
k¼1

HðNÞ0k vs: HðNÞ1 ¼
\m
k¼1

HðNÞ1k : ð3Þ

The overall global superiority-non-inferiority hypothesis testing problem is

H0 ¼ HðSÞ0 [ HðNÞ0 vs: H1 ¼ HðSÞ1 \ HðNÞ1 : ð4Þ

Rejection of this global null hypothesis means that all endpoints have cleared the non-inferiority
threshold while at least one endpoint has cleared the higher superiority threshold.

Let �xxi�k be the sample mean of the k-th endpoint for the i-th group (i ¼ 1; 2; k ¼ 1; 2; . . . ;m),
�xxi� ¼ ð�xxi�1; �xxi�2; . . . ; �xxi�mÞ0 and let S be the pooled sample covariance matrix based on n ¼ n1 þ n2 � 2
degrees of freedom (d.f.) with diagonal entries s2

k and off-diagonal entries sk‘. Then the t-statistics for
testing superiority and non-inferiority of the treatment on the k-th endpoint are given by

tðSÞk ¼
�xx1�k � �xx2�k � xk

sk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=n1 þ 1=n2

p and tðNÞk ¼ �xx1�k � �xx2�k þ ek

sk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=n1 þ 1=n2

p ð1 � k � mÞ : ð5Þ

3 Review of Procedures

As mentioned before, to demonstrate non-inferiority on all endpoints, all foregoing procedures use the
IU test which rejects HðNÞ0 at level a if

min
1�k�m

tðNÞk > tn;a ; ð6Þ

where tn;a is the upper a critical point of the t-distribution with n d.f. Since the overall hypothesis
testing problem (4) is also an IU testing problem, a simple a-level test of H0 is to test both HðSÞ0 and
HðNÞ0 at the a-level. A more powerful test is obtained by considering the type I error of the combined
test of HðSÞ0 and HðNÞ0 as in (7) below. Different procedures use different global tests for HðSÞ0 .

The BLT procedure uses Hotelling’s T2-statistic for testing HðSÞ0 :

T2 ¼ n1n2

n1 þ n2

� �
ð�xx1� � �xx2� � xÞ0 S�1ð�xx1� � �xx2� � xÞ ;

where x ¼ ðx1; . . . ; xmÞ0. The critical constant d for testing H0 is determined from

P min
1�k�m

tðNÞk > tn;a

� �
\ ðT2 > dÞ

� �
¼ a ð7Þ

using bootstrap.
The PW procedure uses the LR statistic to test HðSÞ0 . Define

zk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1n2

n1 þ n2

r
ð�xx1�k � �xx2�k � xkÞ ;
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and

W ¼ ðn1 þ n2 � 2Þ S :

Then the LR statistic is

U2 ¼ ðz� ~ddÞ0 W�1ðz� ~ddÞ ;
where ~dd is the projection of the vector z on to the nonpositive orthant O� ¼ fd j dk � 0 for all kg
with respect to the norm kxk2 ¼ x0W�1 x.

Perlman and Wu (2004) applied the U2-test at the a-level independently of the IU test (6) for non-
inferiority. In that case, the following equation from Perlman (1969) gives the critical constant d for
U2:

1
2

P
c2

m�1

c2
n1þn2�m

> d

� �
þ 1

2
P

�2
m

c2
n1þn2�m�1

> d

 !
¼ a : ð8Þ

Tamhane and Logan (2004) sharpened this test by accounting for non-inferiority tests in the same
way as for the BLT procedure with U2 replacing T2 in (7).

The TL procedure uses the UI test statistic max1�k�mtðSÞk for testing superiority. If this test is conducted
independently of the IU test (6) for non-inferiority then the Bonferroni critical constant tn;a=m can be
used as a conservative upper bound on the exact a critical point, which depends on the unknown correla-
tions among the endpoints. A sharper critical constant d can be obtained by accounting for non-inferior-
ity tests in the same way as for the BLT procedure with max1�k�mtðSÞk replacing T2 in (7).

R�hmel et al. (2006) criticized the incorporation of the non-inferiority test in determining the criti-
cal constant of the superiority test arguing that different choices of non-inferiority margins, ek, lead to
different results for the superiority test which is unacceptable. For example, if the ek are made smaller
then the p-value of the superiority test becomes smaller, making it easier to reject. This phenomenon
is readily explained by the fact that if one can establish non-inferiority at more stringent thresholds,
then that lends more credence to the superiority hypothesis. Refer back to the remark following (2)
that the superiority hypothesis is simply a shift of the non-inferiority hypothesis. In particular, if all
ek ! 0 then establishing non-inferiority is the same as establishing superiority, and a separate test for
superiority is not needed. It should be noted that all the aforementioned tests have the option of not
incorporating the non-inferiority test, but the resulting procedures are less powerful.

R�hmel et al. (2006) devoted much discussion to the lack of monotonicity of some one-sided LR
tests which was not particularly relevant to the superiority-non-inferiority problem. Lack of monotoni-
city exists if as the sample mean differences, �xx1�k � �xx2�k get larger, the test for superiority becomes less
significant instead of becoming more significant. This curious phenomenon has been well-known and
was first pointed out by Silvapulle (1997). Note that the UI test for superiority used by the TL proce-
dure is monotone, and hence does not encounter this problem. Perlman and Wu (2003) have shown
that nonmonotonicity of the LR tests is not due to the LR principle itself, but rather due to the

misspecification of the global superiority hypothesis as a point null hypothesis, d ¼ 0, instead of HðSÞ0
from (3), which is a full complement of HðSÞ1 .

R�hmel et al. (2006) modified the L�uter (1996) test to make it monotone as follows. They re-
stricted to the m ¼ 2 case, and considered the problem of testing H0h : d1 ¼ h1; d2 ¼ h2 where
h1; h2 � 0. Let

�xx��k ¼
n1�xx1�k þ n2�xx2�k

n1 þ n2
;

denote the overall sample mean for endpoint k and let

SSkðxÞ ¼
Pn1

j¼1
x1jk � �xx��k �

n2

n1 þ n2
hk

� �2

þ
Pn2

j¼1
x2jk � �xx��k þ

n1

n1 þ n2
hk

� �2
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note a modified total sum of squares for endpoint k. Define the weight vector wðhÞ ¼ ðw1ðhÞ;w2ðhÞÞ0
where

wkðhÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SSkðhÞ
p :

Then the L�uter’s SS statistic to test H0h is given by

tSSðhÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1n2

n1 þ n2

r P2
k¼1 wkðhÞ ð�xx1�k � �xx2�k � hkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

wðhÞ0 SwðhÞ
q

2
64

3
75 ;

which follows a tn distribution when d1 ¼ h1; d2 ¼ h2. Therefore an a-level test of HðSÞ0 rejects if
tSSðx1; x2Þ > tn;a.

To ensure monotonicity of the test over the non-inferiority region, � ek � dk � xk for k ¼ 1; 2, this
basic test is supplemented with additional requirements resulting in the following decision rule: Reject
HðSÞ0 if tSSðx1; xi2Þ > tn;a and S12 > 0 or if min ðtSSðx1; x2Þ; tSSð� e1; x2Þ; tSSðx1;� e2ÞÞ > tn;a.

R�hmel et al. (2006) proposed the following three-step procedure for m ¼ 2 endpoints in which the
first two steps are similar to those of the other procedures, and the third step tests superiority of the
treatment on individual endpoints.

Step 1 Perform the non-inferiority tests (6). If HðNÞ0 is rejected, go to Step 2; otherwise accept H0

and stop testing.

Step 2 Use the L�uter (1996) test as modified above to guarantee monotonicity to test HðSÞ0 . If HðSÞ0
is rejected, go to Step 3; otherwise accept H0 and stop testing. Alternatively, use the Holm (1979) test
as follows: Let tðSÞð1Þ � tðSÞð2Þ be the ordered t-statistics for superiority. If tðSÞð2Þ > tn;a=2 then reject HðSÞ0 and
go to Step 3; otherwise accept H0 and stop testing.

Step 3 Use separate one-sided a-level t-tests on each endpoint. If the Holm test is used in Step 2,
then it only remains to check if tðSÞð1Þ > tn;a:

The insistence on using the modified L�uter test makes the RGBL procedure unnecessarily unwiel-
dy. It is difficult to see why the condition S12 > 0 is relevant to testing the superiority hypothesis.
Also, there is no easy way to extend this modified test to more than two endpoints. Finally, the L�uter
test has the undesirable property that its power is bounded strictly below 1 if one of the dk !1 as
has been shown by Frick (1996) and Logan and Tamhane (2004). R�hmel et al. also found in their
simulations that if “similar beneficial effects in both variables can be assumed, L�uter’s SS procedure
is superior to Holm’s procedure” but not in other cases unless “the correlation between both variables
is low or negative” (which is often not the case for related endpoints). In general, L�uter’s test is not
as powerful as some of the alternative procedures such as O’Brien’s (1985) OLS or GLS test because
it uses the total sum of squares instead of the within sum of squares in the definition of its test
statistic. This is also confirmed in the R�hmel et al. simulation study where they found that the
inferiority in terms of power of L�uter’s SS compared to O’Brien’s (1985) GLS is “negligible (usually
not more than 1–2%).” In the power simulations reported in Section 6, the RGBL procedure generally
performed worse than its competitors.

4 Closed Testing Formulation

For m ¼ 2, the goal of showing that the treatment is superior on a particular endpoint and at least
non-inferior on the other one can be met by testing the following hypotheses:

H01 : HðSÞ01 [ HðNÞ02 and H02 : HðNÞ01 [ HðSÞ02 : ð9Þ
If H01 is rejected then we conclude that the treatment is superior on endpoint 1 and non-inferior on

endpoint 2. Similarly, if H02 is rejected then we conclude that the treatment is superior on endpoint 2

Biometrical Journal 50 (2008) 5 697

# 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



and non-inferior on endpoint 1. If both H01 and H02 are rejected then we conclude that the treatment
is superior on both the endpoints. Denote this as family F ¼ fH01;H02g. To control the FWER for this
family we consider its closure: F ¼ fH01;H02;H01 \ H02g. Note that

H01 \ H02 ¼ ðHðSÞ01 \ HðNÞ01 Þ [ ðH
ðSÞ
01 \ HðSÞ02 Þ [ ðH

ðNÞ
02 \ HðNÞ01 Þ [ ðH

ðNÞ
02 \ HðSÞ02 Þ

¼ HðSÞ0 [ HðNÞ0 ;

which is the global null hypothesis H0 in (4). The closed test procedure is as follows. First test H0 at the
a level. If it is rejected, then proceed to test H01 and H02, each at the a level. To test H01 and H02, we
only need to test their superiority components, i.e., HðSÞ01 and HðSÞ02 , respectively, since the non-inferiority
components, HðNÞ01 and HðNÞ02 , are already tested and rejected in the test of H0. This results in the three-step
procedure stated by RGBL except that in the second step any other global test of HðSÞ0 can be used. We
will use the tmax or the U2 test. Furthermore, this global test can be sharpened as explained before. In
general, if there are m � 2 endpoints then mþ 1 steps of testing are required by the closed procedure.
For example, if there are three endpoints then, analogous to (9), we have three hypotheses:

H01 ¼ HðSÞ01 [ HðNÞ02 [ HðNÞ03 ; H02 ¼ HðNÞ01 [ HðSÞ02 [ HðNÞ03 ; H03 ¼ HðNÞ01 [ HðNÞ02 [ HðSÞ03 ;

and the closure includes three pairwise intersections and one overall intersection. A closure proce-
dure involves hierarchical testing of these hypotheses. One can show that
H0 ¼ HðSÞ0 [ HðNÞ0 ¼ H01 \ H02 \ H03, which is rejected as a result of the first two steps of testing.
Step 3 tests the pairwise intersections, H01 \ H02, H01 \ H03, and H02 \ H03, each at the a level. Since
the non-inferiority hypotheses HðNÞ0k ð1 � k � 3Þ have already been rejected and because the pairwise

intersection can be written as H0i \ H0j ¼ ðHðSÞ0i \ HðSÞ0j Þ [ HðNÞ0 , this can be done by simply testing the

superiority hypotheses alone, HðSÞ01 \ HðSÞ02 , HðSÞ01 \ HðSÞ03 and HðSÞ02 \ HðSÞ03 , each at the a level. Alterna-

tively, one can recognize that H0i \ H0j � ðHðSÞ0i \ HðSÞ0j Þ [ ðH
ðNÞ
0i [ HðNÞ0j Þ; which can be tested using the

global superiority-non-inferiority test of Tamhane and Logan (2004). Finally, depending on which of
these pairwise intersections are rejected, the singletons HðSÞ01 , HðSÞ02 and HðSÞ03 are tested individually at
the a level at Step 4.

We now give the algorithm for the closed test procedure in the general m > 2 case. The hypotheses
of interest are fH0k ¼ HðSÞ0k [ HðNÞ0 g. Let I � f1; . . . ;mg, so that H0I ¼ \k2I H0k. The steps are as fol-
lows:

Step 1 Test for non-inferiority by rejecting HðNÞ0 at level a and continuing to step 2 if
min1�k�mtðNÞk > tn;a.

Step 2 Test all intersection hypotheses H0I ; I � f1; . . . ;mg.
This can be done either by ignoring the non-inferiority hypotheses and simply applying a standard

superiority test, or by incorporating the non-inferiority hypotheses and applying a global superiority-
non-inferiority test. For example, the Bonferroni adjustment ignoring non-inferiority would reject H0I

if maxk2I t
ðSÞ
k > tn;a=m0 , where m0 ¼j I j. To use a global superiority-non-inferiority test, recognize that

H0I ¼
\
k2I

HðSÞ0k

( )
[ HðNÞ0

�
\
k2I

HðSÞ0k

( )
[

[
k2I

HðNÞ0k

( )

Rejection of the latter hypothesis implies rejection of H0I . This latter hypothesis can be directly tested
by computing the p-value

pI ¼ P min
k2I

TðNÞk > tn;a

� �
\ max

k2I
T ðSÞk > max

k2I
tðSÞk

� �� �
; ð10Þ
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analogous to expression (7), and rejecting H0I at level a if pI < a. This p-value can be estimated
using bootstrap.

Step 3 Test the individual hypotheses H0k by rejecting H0k i f tðSÞk > tn;a and all H0I ; I � fkg are also
rejected at level a. Equivalently, compute the adjusted p-value ~ppk ¼ maxI�fkgpI and reject H0k if
~ppk < a.

5 Examples

We demonstrate the described procedures on two examples. In the first example, we use the data
from R�hmel et al. (2006) to contrast their procedure with ours in the two-endpoint setting. In the
second example, we illustrate the procedure on the data from a clinical trial for asthma with four
endpoints.

5.1 Example 1

R�hmel et al. (2006) give an example of a clinical trial comparing an active treatment A and a place-
bo P based on two approximately normally distributed primary endpoints. Patients were randomized
in a 2 : 1 ratio to treatment versus placebo. Since low values of the endpoints were considered desir-
able, all test statistics were based on the control minus treatment differences, P� A. R�hmel et al.
used non-inferiority margins of e1 ¼ 1 and e2 ¼ 2 for the two endpoints, superiority margins of
x1 ¼ x2 ¼ 0, and an overall a level of 0.025. The summary data are given in Table 1 for each group.

The t-statistics for non-inferiority are computed to be tðNÞ1 ¼ 3:945 and tðNÞ2 ¼ 2:990. Since both
statistics are above the critical value of 1.96, we reject HðNÞ0 and proceed to Step 2.

In Step 2, we apply a global test of HðSÞ0 . The two test statistics for superiority are tðSÞ1 ¼ 2:653 and
tðSÞ2 ¼ 0:788, so that tmax ¼ 2:653. The critical value for the tmax test is either 2.114 (obtained using
bootstrap by accounting for rejection of the non-inferiority hypotheses) or 2:220 (the upper 0.0125
critical point of the standard normal distribution which does not account for rejection of the non-
inferiority hypotheses). In either case the superiority hypothesis HðSÞ0 is rejected, and we proceed to
Step 3. If the PW test is used, the test statistic is U2 ¼ 0:0108, while the critical value is either
0.007335 (obtained using bootstrap by accounting for rejection of the non-inferiority hypotheses) or
0.007935 (obtained using expression (8)). In either case, the global superiority hypothesis is rejected.
R�hmel et al. (2006) computed the modified L�uter test statistic to be 2.0416 with a critical value of
1.964, which also leads to rejection of HðSÞ0 .

In the final step, individual test statistics for superiority are compared to the critical value of 1.96.
Only the hypothesis for endpoint 1 is rejected, leading us to conclude that there is a significant differ-
ence between treatment and placebo on endpoint 1, while the treatment group is non-inferior on end-
point 2.

Biometrical Journal 50 (2008) 5 699

Table 1 Summary data for Example 1.

Sample means Covariance matrix

Group n �xxi�1 �xxi�2
S

A 442 13.269 22.796 78.60082 36.12524
36.12524 111.65005

P 211 15.322 23.512 100.13374 53.62950
53.62950 130.84153
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5.2 Example 2

Zhang et al. (1997) consider a randomized, multicenter, double-blind, parallel arm clinical trial to
assess the efficacy and safety of a new drug in asthma patients. Four endpoints are considered: Forced
expiratory volume in 1 second (FEV1); Peak expiratory flow rate (PEFR) in litres per minute; Symp-
toms score (SS) on a scale from 0–6; and Additional medication use (AMU) in puffs per day. These
four endpoints are meant to encompass different aspects of the disease which may respond to the new
therapy. The outcomes were measured as percent change from baseline for FEV1 and change from
baseline for all others. There were 34 patients in the treatment group and 35 patients in the placebo
group. The summary results are given in Table 2.

We are interested in determining which endpoints are superior while requiring that all endpoints be
demonstrated to be non-inferior. We use non-inferiority thresholds of ek ¼ 0:2sk, and superiority
thresholds of xk ¼ 0. Using a one-sided type I error rate of 0.025, the non-inferiority critical value is
c ¼ 2:00, so that all four endpoints are considered non-inferior. Several strategies are possible for
assessing superiority; we illustrate two here. First, one could separate the superiority and non-inferior-
ity testing using the intersection-union principle. Then simple application of the Holm procedure
yields adjusted p-values of ð0:008; 0:011; 0:028; 0:028Þ, so that the treatment is concluded to be super-
ior with respect to the first two endpoints (FEV1and PEFR) at the 0.025 significance level.

Alternatively, one could apply a full closed test procedure incorporating the non-inferiority hypoth-
eses into each intersection null hypothesis. Here the intersection null hypothesis for the set of hypoth-
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Table 2 Summary data for Example 2.

Endpoint

Group FEV1 PEFR SS AMU

Treatment Mean 14.0 16.5 0.86 0.49
Placebo Mean 5.7 1.6 0.34 0.15

Pooled SD 11.5 22.3 0.96 0.66
tðSÞ 3.00 2.75 2.25 2.13

p (one-sided) 0.002 0.004 0.014 0.018
tðNÞ 3.83 3.58 3.08 2.96

Correlation FEV1 1
Matrix PEFR 0.25 1

SS 0.31 0.42 1
AMU 0.24 0.43 0.67 1

Table 3 Adjusted p-values for example 2, using the tmax

superiority test, adjusting for the non-inferiority testing.

Hypothesis H0I ~pp Hypothesis H0I ~pp

f1; 2; 3; 4g 0.0011 f2; 3g 0.0044
f1; 2; 3g 0.0013 f2; 4g 0.0044
f1; 2; 4g 0.0011 f3; 4g 0.0175
f1; 3; 4g 0.0016 f1g 0.0017
f2; 3; 4g 0.0044 f2g 0.0044
f1; 2g 0.0013 f3g 0.0175
f1; 3 0.0017 f4g 0.0184
f1; 4g 0.0016
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eses I � f1; 2; 3; 4g is interpreted as at least one of the endpoints in I is inferior, or none of the
endpoints are superior. Applying the full closed test procedure with the tmax superiority test and ac-
counting for non-inferiority requirements yields the adjusted p-values in Table 3. The adjusted p-
values for the individual endpoint hypotheses are ð0:002; 0:004; 0:018; 0:018Þ, so that we can conclude
that the treatment is superior to the placebo on all four endpoints.

6 Simulation Study

We performed a simulation study to investigate the FWERs as well as the powers of the three compet-
ing procedures: TL, PW and RGBL. Two versions of TL and PW were studied: the basic versions that
did not employ the adjustment due to non-inferiority testing (denoted by TL and PW) and the shar-
pened versions that did (denoted by TL* and PW*). Sample sizes of n1 ¼ n2 ¼ 100 were used, with
covariance matrices consisting of 1’s on the diagonal and a common correlation r ¼ 0:0 or 0:5. A
superiority threshold of 0 was used in all cases. Three different non-inferiority margins were consid-
ered, e ¼ 0:2; 0:33; 0:5. Values of the true mean difference vector d include scenarios where both end-
points have a positive effect, as well as those where only one endpoint has a positive effect. A one-
sided significance level of 0.025 was used for all simulations. A total of 10,000 replications were
simulated for each estimate. The FWER estimates are given in Table 4, and the power estimates to
reject at least one of the false hypotheses are given in Table 5. We also include in each table the
proportion of times that the non-inferiority hypotheses were rejected.

In Table 4, notice that while all procedures control the FWER at the 0.025 level, the RGBL proce-
dure tends to be more conservative than the others. This is possibly because the global superiority test
in Step 2 does not account for the non-inferiority tests. All of the procedures are conservative when
e ¼ 0:2; this is possibly because of the low likelihood of satisfying the non-inferiority requirement.

The power results in Table 5 indicate that the RGBL procedure performs worse than the others in a
majority of cases, especially when there is a positive effect in only one of the endpoints. This is possibly
because of the poor performance of the L�uter test in this configuration, which has been noted by Logan
and Tamhane (2004) and Frick (1996). The RGBL procedure has higher power than TL and PW proce-
dures only when the effects in both endpoints are equal. Overall, the PW procedure performs slightly
better than the TL procedure because it has better power when both endpoints have a positive effect,
although the differences in most cases are nonsignificant; this is the same finding as in Tamhane and
Logan (2004). However, the U2 statistic is hard to compute, its critical values are not commonly avail-
able and it is difficult to interpret to practitioners. The tmax statistic does not have these drawbacks.

Also, we point out that the impact of the bootstrap to account for the non-inferiority on the TL and
PW procedures is somewhat variable. Generally, there are higher power gains in the r ¼ 0 case than
in the r ¼ 0:5 case. However, in a number of cases, the power gains are not significant. This is
because we are looking at the power to reject individual endpoint hypotheses, and the power advant-
age of the global test is not carrying through, especially when there is a large effect in only one of the
endpoints, e.g., ðd1; d2Þ ¼ ð0:66; 0Þ, in which case there are slight power losses. This indicates that
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Table 4 Familywise error rates.

r e d RGBL TL* TL PW* PW Non-inferiority power

0 0.2 (0,0) 0.011 0.012 0.008 0.012 0.010 0.089
0.33 (0,0) 0.016 0.024 0.016 0.021 0.017 0.421
0.5 (0,0) 0.016 0.025 0.022 0.021 0.021 0.886

0.5 0.2 (0,0) 0.020 0.025 0.017 0.024 0.018 0.153
0.33 (0,0) 0.022 0.025 0.027 0.025 0.025 0.499
0.5 (0,0) 0.022 0.025 0.025 0.025 0.025 0.900
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when one is interested in the power to reject individual endpoint hypotheses, one can use the simpler
test of superiority based on testing HðSÞ0 without accounting for the non-inferiority if it is expected that
only one of the endpoints will show a large positive effect.

The column containing the power of the non-inferiority tests can be useful in interpreting the over-
all power results. The non-inferiority test power is dictated by the separation between the non-inferior-
ity threshold and the smallest dk, i.e., for a given non-inferiority threshold the power is smaller when
one of the endpoints has no effect (dk ¼ 0) and higher when all the endpoints have an effect. The
power of the non-inferiority tests can also be used to determine the relative impact of the non-inferior-
ity versus superiority tests. The difference between the overall power and the power of the non-infer-
iority test represents the probability that the study will pass the non-inferiority requirement but not
pass the superiority test. For example, in the first row of Table 5, the power for the RGBL procedure
is 0.239 and the non-inferiority power is 0.292. This indicates that 5.3% of the simulated trials were
able to show non-inferiority but not superiority.

When the non-inferiority hypotheses are unlikely to be rejected (e ¼ 0:2 and at least one dk ¼ 0), little
differences in the superiority tests can be seen. However, when e ¼ 0:33 or 0.5 so that the non-inferiority
tests are less of a hurdle, the differences in the superiority tests are more pronounced. For example, when
e ¼ 0:5 so that there is a greater than 90% chance of demonstrating non-inferiority, the RGBL procedure
performs poorly when only one of the endpoints has a positive effect and performs well when both have
an effect, matching the expected performance based on superiority testing alone.
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Table 5 Power to reject at least one individual endpoint hypothesis.

r e d RGBL TL* TL PW* PW Non-inferiority power

0 0.2 (0.4,0) 0.239 0.243 0.214 0.243 0.228 0.292
(0.66,0) 0.287 0.287 0.303 0.287 0.304 0.305
(0.4,0.2) 0.698 0.702 0.631 0.702 0.684 0.796
(0.33,0.33) 0.822 0.826 0.739 0.826 0.808 0.926

0.33 (0.4,0) 0.431 0.510 0.467 0.496 0.468 0.638
(0.66,0) 0.642 0.650 0.644 0.649 0.643 0.649
(0.4,0.2) 0.789 0.798 0.746 0.808 0.799 0.960
(0.33,0.33) 0.848 0.837 0.777 0.855 0.845 0.993

0.5 (0.4,0) 0.491 0.687 0.681 0.676 0.670 0.941
(0.66,0) 0.860 0.931 0.932 0.930 0.930 0.941
(0.4,0.2) 0.798 0.780 0.769 0.818 0.816 0.998
(0.33,0.33) 0.848 0.788 0.778 0.848 0.847 1.000

0.5 0.2 (0.4,0) 0.251 0.275 0.265 0.273 0.263 0.294
(0.66,0) 0.295 0.296 0.301 0.296 0.301 0.301
(0.4,0.2) 0.642 0.672 0.647 0.672 0.651 0.803
(0.33,0.33) 0.739 0.734 0.701 0.744 0.724 0.932

0.33 (0.4,0) 0.355 0.538 0.536 0.530 0.528 0.646
(0.66,0) 0.612 0.643 0.648 0.643 0.648 0.650
(0.4,0.2) 0.682 0.737 0.737 0.740 0.738 0.965
(0.33,0.33) 0.750 0.707 0.703 0.731 0.724 0.993

0.5 (0.4,0) 0.364 0.710 0.703 0.697 0.690 0.936
(0.66,0) 0.745 0.937 0.940 0.936 0.939 0.939
(0.4,0.2) 0.681 0.745 0.742 0.747 0.744 0.999
(0.33,0.33) 0.745 0.713 0.715 0.733 0.736 1.000
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7 Concluding Remarks

We have conclusively argued that accounting for non-inferiority testing in the global test for super-
iority is justified and enhances its power. However, simulation results indicate that this power advan-
tage does not always carry through by the same amount to the superiority tests on individual hypoth-
eses. Thus, the TL and PW global tests can be employed in their original simplified forms if only one
of the endpoints is expected to have a large effect. Even in their simplified forms, use of these tests
instead of the L�uter test results in higher power except when the endpoints have equal effects.
Although the PW test is slightly more powerful, it is also more difficult to compute and apply in
practice. The closed testing formulation shows that the three-step procedure controls the FWER for
two endpoints; for more than two endpoints additional steps of testing are required to test all hierarch-
ical intersections.
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